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Abstract: A tool has been developed that selects one representative cycle, or a 
set of cycles, from large measurement data sets based on a specified set of repet-
itive signals, possibly weighed in their importance. Three different computation 
methods have been developed and tested, all preserving physical correctness. 
These approaches are described in detail and compared in the paper. 

1 Introduction 

In an area where both energy efficiency and productivity are of high concern it is 
important to know how vehicles and mobile working machines are used in real world 
applications in order to carry out design optimisations. Reference cycles are common-
ly used to assess the impact of design changes on the performance of components, 
subsystems or complete vehicles and machines by means of computation. This is 
convenient and practical, though caution is advised. Out of necessity, any such refer-
ence cycle is a simplified representation of the real-life use of a system or component 
that is assumed to be most common. Choosing a reference cycle, representing the 
behaviour of a system, is a way of modelling that particular system [1,2]. From this 
follows that reference cycles are specific for the situation and task or question at hand, 
just like simulation models are. This means that there can never be one single refer-
ence cycle that will give the right answers in any context, just like there will never be 
one single simulation model that can be used to assess any type of system property: 
complete system performance, energy efficiency, component durability, noise and 
vibration, etc. all require specialised models. Models are determined by the context 
and the questions to be answered − and so are reference cycles.  

Synthetic i.e. artificially constructed cycles are not a good choice even when based 
on real measurement results such as in [3], since averaging, interpolating or time and 
value scaling easily impair physical correctness. For example, scaling a measured 
cycle in the time dimension (i.e. making it slower or faster in order to meet a specific 
target duration) breaks physicality of dependent signals that are based on a time de-
rivative or time integral of another signal – if not individual amplitude scaling is per-
formed in addition in order to adjust for the errors introduced. However, scaling the 
amplitude of a signal (i.e. adjusting all values by a common factor) breaks physicality 
when this signal is a factor or ratio of other signals. This means that in principal forc-
es, powers, energies, consumptions, efficiencies, speeds, accelerations etc. must not 



be scaled, neither in time nor amplitude (value). That simple averaging of cycle val-
ues will not work is self-evident and requires no further discussion. 

Elaborate ways of constructing cycles for testing of fuel consumption and exhaust 
emissions have been proposed [4,5] though the focus is more on representing a group 
of systems in average condition, like a fleet of cars in normal driving, rather than 
describing specific systems in specific conditions. 

When, instead, using measured working cycles a conflict between validity and 
practicality arises: a measurement campaign often results in a large amount of cycles. 
For working machines and heavy vehicles these cycles are often repetitive and collec-
tively represent the machine usage in the application under consideration. Due to 
practical reasons such as constraints on computational resources one often wants to 
capture the essence of the specific application with only one single cycle rather than a 
set of many. The challenge is to find the most representative working cycle within a 
given measured data set. The often employed quick and dirty way of selecting such 
cycles is by visual comparison and cannot be recommended. 
Another variant of this scenario can be the task to find a reference cycle that based on 
a given set of measurements represents the most intense 10% operation, for example 
in order to account for the most demanding customers. Again, performing this task 
visually will probably not lead to an acceptable result in an acceptable time.  

2 Application background 

Our interest in computing reference cycles stems from working with the development 
of construction machines and their major subsystems like propulsion and hydraulics. 
In this paper a wheel loader in short loading cycles is used as an example.  

Sometimes also dubbed V- or Y-cycle for its characteristic driving pattern (Fig. 1), 
a wheel loader’s short loading cycle typically involves bucket loading of material like 
gravel, sand, or wood chips on an adjacent receiver within a rather tight time frame of 
25-35 seconds, in extreme situations even faster than that [6]. 

Such a short loading cycle represents several interesting challenges for the design 
engineer: not only is the momentary power distribution between parallel subsystems 
hydraulics and propulsion to be balanced in order to minimise losses, but also a bal-
ance between the subsystems’ capacities in terms of forces and speeds needs to be 
achieved. In [7] a typical traditional design process is described, consisting of static 
calculations of isolated subsystems and iteration of the results in calculation loops in 
order to find a good balance. In the then envisioned enhanced design process dynami-
cally augmented (yet still static) calculations play a role as a bridge to dynamic simu-
lation of the complete machine [7].  

In each design phase the work of the wheel loader to be developed needs to be de-
scribed. Rather than employing a set of static design points (i.e. neglecting the dy-
namics of machine operation and pretending there is only a limited number of steady-
state operation points) engineers use reference cycles to preliminarily dimension 
components and subsystems. For highest relevance (and therefore best quality of the 
result) these reference cycles are distilled from real measurement campaigns and 
represent the typical duty and work task of the machine or system in question.  

 



 
Fig. 1 Short loading cycle: phases and extension from V- to Y-cycle [6]. 

 
Another aspect is that today machine manufacturers work closely with suppliers of 

components and systems during the product’s whole life cycle. For example, a second 
or third party might take on responsibility for conceptual and detailed design of the 
engine, complete driveline or hydraulics. Often, for competitive reasons an OEM 
might not want to give these parties too deep an insight into the detailed design rules 
for the complete machine. To minimise the confidential data transferred the system in 
question could be isolated and the inputs and outputs could be described by means of 
reference cycles. For example, for dimensioning the steering system of a wheel loader 
the required system output can be described as typical profiles of steering cylinder 
load and speed in a short loading cycle (Fig. 1).   

3 Methods 

The previous section establishes that engineers frequently encounter the problem of 
having to extract one or a limited number of representative cycles from a large dataset 
of measurements. This task can be broken down into two subtasks: 
 

1. Identifying individual cycles in continuous measurements 
2. Determining one or a set of reference cycles based on specified signals 



3.1 Identifying individual cycles in continuous measurements 

The most common way to gather measurement data is likely to operate a machine (in 
our case: wheel loader in short loading cycles) continuously for a certain time period, 
which results in a large data set where the individual cycles need to be identified and 
separated, preferably automatically.  

A characteristic and repeating pattern needs to be found based on a single or sev-
eral signals that allow identifying cycle start and finish, possibly even start and finish 
of specific phases within each cycle, such as the bucket filling phase (phase 1 in Fig. 
1). Work with respect to this has been published in [8-10]. In Fig. 2 the lift angle of 
the wheel loader’s loading unit and the current transmission gear is used to identify 
individual cycles. 

 

 
Fig. 2 Identification of individual cycles using active gear and lift angle.  

 
Identification of specific phases within each cycle has been proven useful to im-

prove the performance of the various methods for finding representative working 
cycles. In this paper we chose to divide the short loading cycle into four phases, cor-
responding to the four legs of the cycle (Fig. 1). 

3.2 Determining one or a set of reference cycles based on specified signals 

Three different methods have been developed to determine one or a set of reference 
cycles out of a group of cycles, based on specified signals, each utilizing a different 
algorithm to select a real, i.e. measured cycle out of the collective, thus preserving 
physical correctness: 
 

1. Mean Cycle Method: constructs an intermediate artificial cycle by the use of 
means and then selects the measured cycle closest 

2. Synthetic Mean Method: constructs an intermediate artificial cycle repre-
senting the peak frequency and amplitude of the data, then selects the meas-
ured cycle closest 

3. Least Error Method: compares all cycles with each other and then chooses 
the measured cycle with the smallest deviation to the collective with respect 
to amplitude and length 
 

All three identification methods (each proposed and advocated for by a different 
co-author of this paper, though improved collaboratively) have in common that the 
final selection is based on a calculated error value. To improve the selection process 



several signals within the measurement data set can be specified as significant (if 
desired even weighted), for example to find the cycle that is most representative in 
terms of engine power and traction force applied to the ground. For scalars that only 
give a single value per cycle (like cycle time, productivity, fuel consumption and 
efficiency) the individual cycle’s value is instead compared with the median value for 
the set and the error is calculated from the difference.  

3.3 Mean Cycle Method  

The Mean Cycle Method is based on the work in [3]. The improvement in our version 
is that the constructed artificial mean cycle is only an intermediate step, used to select 
one of the measured cycles out of the data set. Therefore no problems with broken 
physicality exist. 

The principle approach is to first time-scale all cycles to the same length (the me-
dian duration) and then to create an “average” cycle by taking the arithmetic mean at 
each time sample for all the cycles. As pointed out previously, there is a high likeli-
hood that the physicality in this “average” cycle is corrupt, but it is only used as an 
intermediate step. To reduce excessive smoothing for cycles of significant different 
durations the cycles are divided into phases (the four legs of the short loading cycle) 
and time-scaling is done per phase.  

The method includes the following steps: 
 
1. For each phase: 

a. Calculate median phase length. The median is used to avoid high 
impact from outliers.  

b. Time-scale corresponding phase in all cycles to median length.  
c. Calculate mean signal. Calculating the mean amplitude value in 

each time step, using all cycles. 
d. Calculate error of amplitude and time for each cycle. The amplitude 

error is the accumulated error in each time step, while the time er-
ror is the phase’s time deviation from the median duration.  

e. Remove outliers. Removing cycles with a total error larger than the 
specified quantile.  

f. Recalculate mean cycle without outliers. 
g. Recalculate errors to the new mean cycle.  

2. Calculate each cycle’s total error. The sum of errors from each phase. 
3. Select most representative cycle. Select the cycle with the smallest total am-

plitude and time error.  

This method is fairly straight forward and computationally inexpensive. Fig. 3 
shows the result of the method performed on a collective of 100 working cycles. The 
selected cycle resembles the artificial cycle rather well.  

 
 

 



  
Fig. 3 Mean Cycle Method applied (specified signal is vehicle speed). 

 

3.4 Synthetic Mean Method 

The Synthetic Mean Method tries to improve over the Mean Cycle Method by con-
structing an artificial cycle without calculating arithmetic mean values – in order to 
avoid the smoothing effect present otherwise, even when considering cycle phases. 
The ambition has been to resemble the measured cycles in a better way by first calcu-
lating all cycle peaks’ amplitude and position and then averaging individually. This 
method’s steps are:  
 

1. Find all significant peaks for each cycle. Significant peaks are defined as the 
largest peak inside a specified time interval.  

2. Calculate most frequent number of peaks found.  
3. Collect all cycles with number of peaks corresponding to 2. 
4. For each cycle: between each peak find the valley’s position and amplitude. 

If more than one valley can be found, use the valley with the lowest value.  
5. Check if cycle boundaries are peaks or valleys. Check derivative at start and 

end of cycle.  
6. Calculate the amplitude in the middle between peaks and valleys.  
7. Calculate the mean position and amplitude for each point (peak, valley and 

midpoint). 
8. Interpolate between the points. Create the artificial cycle by the use of cubic 

interpolation between the points.  
9. Calculate all cycles’ error from the artificial cycle. Combine the errors for 

amplitude, time and number of peaks. Calculation of amplitude error by 
time-scaling the synthetic cycle to the duration of the current measured cy-
cle.  

10. Select most representative cycle. Select cycle with the lowest total error.  

Since this method only uses signals matching the most common number of peaks 
the amount of data used for constructing the artificial signal will be lower than for the 
Mean Cycle Method. The actual number of measured cycles contributing to the syn-
thetic mean is dependent on the specified signals’ properties. A large range in number 
of signal peaks identified leads to fewer cycles being used in constructing the synthet-



ic mean. Reducing the aggressiveness of the peak finding algorithm or dividing the 
cycles into phases can help ensuring the synthetic mean’s representativeness. 

Obviously, this algorithm cannot handle monotonous signals like accumulated 
fuel consumption. Figure 4 shows the result of application to the test collective. The 
selected cycle resembles the artificial cycle rather well, the latter being less smoothed 
than what is the case when using the Mean Cycle Method.  
 

 

  
Fig. 4 Synthetic Mean Method applied (specified signal is vehicle speed). 

 

3.5 Least Error Method 

The Least Error Method differs from the other methods in that no artificial cycle is 
constructed as reference. Instead, each cycle is compared to all others and the cycle 
with the smallest amplitude and time error is selected as the most representative.  

This method’s steps are: 
 

1. For each cycle: 
a. Scale all other cycles to the current cycle’s length.  
b. Calculate the amplitude error between the current cycle and all the 

others, individually. 
c. Calculate the cycle’s length error with respect to the median cycle 

time. 
2. Remove outliers. Cycles with total error larger than specified quantile.  
3. Repeat step 1. 
4. Select most representative cycle. Select cycle with the smallest total error.  

The method is computationally more expensive than the others, since the number 
of calculations is quadratic proportional to the number of cycles – compared to the 
linear relationship of the Mean Cycle Method and the Synthetic Mean Method. How-
ever, computation of the Least Error Method can easily be parallelised, decreasing the 
required calculation time.  

The selected cycle from this method can be viewed in Fig. 5. Dividing the indi-
vidual cycles into phases will further increase the quality of the result, however also 
further increase computation time.  



  
Fig. 5 Least Error Method applied (specified signal is vehicle speed). 

 

4 Results and discussion 

All three methods work well in the test suite employed by us, consisting of 100 work-
ing cycles generated by different machine operators in a study reported in [11].  

When using the methods with only one signal specified as significant, the output 
varies. Fig. 6 shows the cycles identified as representative top 5 when vehicle speed is 
specified as the only significant signal.  

 

 
Fig. 6 Vehicle speed profiles of the top 5 representative cycles per method when only vehicle 

speed is specified as significant. Legend shows the cycle index# (first choice on top).  

 
The deviation in the selected cycles between the three methods is less pronounced 

when using a signal with fewer peaks, like lift angle (see Fig. 2), since the artificial 
signal constructed by the Mean Cycle Method and Synthetic Mean Method will be-
come more similar. 

Adding additional significant signals, thus including them in the process to deter-
mine the representative cycle, leads to a more similar output from the methods. This 
can be seen in Fig. 7, where in addition to vehicle speed also vehicle direction, current 
transmission gear, lift angle and tilt angle were selected as signals of equal signifi-
cance. Furthermore, the scalars cycle duration, bucket load and fuel consumed were 
specified as significant signals. Those signals were used to calculate fuel efficiency 
(in t/L, i.e. material loaded per unit fuel) and productivity (in t/h, i.e. material loaded 
per time unit).  

When comparing the vehicle speed plots in Fig. 6 and Fig. 7 it is apparent that the 
selection of the representative cycle(s) is less impacted by a single signal specified as 
significant when additional, equally weighted, significant signals are specified. 



 
Fig. 7 Vehicle speed and lift angle profiles of the top 5 representative cycles per method  

when ten signals are specified as significant (see text). 

 
All three methods selected cycle #47 (visualised in Fig. 8) as most representative.  

 

 
Fig. 8 Cycle #47 as determined as most representative by all three methods.  
Rectangle in (x,y)-plots represents one standard deviation from the mean. 

 
Which method to choose depends on the time budget and the intended application 

of the representative working cycle. The Least Error Method is, if not parallelised, 
significant slower than the other methods when dealing with large measurement sets, 
while the Synthetic Mean Method may consume some time for initial tuning of the 
peak finding algorithm. The latter might be preferred for analysis applications were it 
is important that the selected cycle representative in terms of peakiness, for example 
in simulations giving input to durability analysis.  



All methods employ time scaling during the selection process in order to be able 
to compare cycles and cycle phases. As has been discussed in the beginning of this 
paper, all scaling is highly likely to break physicality and should therefore be used as 
sparingly as possible. Table 1 shows how much time scaling the different methods 
employed. However, it needs to be pointed out again that the result, i.e. the cycle 
determined to be most representative is not impacted at all, since any scaling is only 
be performed as an intermediate step. Also, each method penalises cycle length error 
thus intrinsically strives to minimise scaling. 

 

Table 1. Time scaling of top 10 selected cycles and whole set (100 cycles) for each method. 

 

 Mean Median SD 
Method Top 10 All Top 10 All Top 10 All 
Mean Cycle 12% 19% 11% 16% 5% 14% 
Synthetic Mean 8% 13% 4% 10% 4% 10% 
Least Error 6% 7% 7% 5% 8% 13% 

 
 
Note that for the Least Error Method the scaling shown is the average scaling 

needed for each cycle. In contrast to the Mean Cycle Method and Synthetic Mean 
Method where time scaling is only performed once per cycle under consideration 
(when compared to the artificial mean) when using the Least Error Method each cycle 
is scaled multiple times (once for each comparison with a peer) .  

Fig. 9 shows a comparison of the artificial signal that the Mean Cycle Method and 
the Synthetic Mean Method construct for the test data set of 100 working cycles when 
vehicle speed is specified as the significant signal. As mentioned previously, the 
shape of artificial signal constructed by the Synthetic Mean Method is less smooth 
compared to the Mean Cycle Method. 

 
  

 
 

Fig. 9 Comparison of constructed artificial signals (specified signal is vehicle speed). 



Until now it has not been explicitly mentioned that one interesting aspect of the 
tool developed is that it can be used to select a cycle with a specified target. For ex-
ample, if a representative cycle with respect to engine power is selected, there would 
be about 50% of the cycles with lower and 50% with higher engine power generated. 
By changing the quantile value (default is 0.5 for the median) the tool can select cy-
cles representing another duty, for example 90% engine power.  

When combining this with the use of multiple signals the tool can be used to se-
lect, for example a cycle with high productivity, low fuel consumption and overall 
normal operator inputs on accelerator pedal and hydraulic levers ( Fig. 10). Compared 
to the selection shown in Fig. 8 the values for productivity and efficiency are signifi-
cantly higher. 

 

 
Fig. 10 Cycle representing high productivity, low fuel consumption and normal operator input.  

Rectangle in (x,y)-plots represents one standard deviation from the mean. 

 

5 Conclusion 

Having to select a representative cycle out of a large data set of measurements is a 
task that engineers are faced with on a frequent basis. It is possible to accomplish this 
without having to resort to time-wise expensive and error-prone visual comparisons or 
simple and flawed calculations of arithmetic means. 

In this paper we presented three different methods for automatically selecting a 
single or a set of representative cycles out of a collective – with the advantage of the 
result not being impaired by broken physicality. The output can be used in various 
applications, such as identification of how (and how effective) an operator uses a 
machine (possibly in comparison to his/her peers), to determine/verify specific use 
cases, or as representative input to further analysis in a product development process. 
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